Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Entomol ; 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38461045

RESUMO

The transmission and incidence of vector-borne diseases rely on vector distribution and life history traits such as survival, fecundity, and feeding. Since arthropod disease vectors are ectotherms, these vital rates are strongly influenced by temperature. Chagas disease is a neglected tropical disease caused by the protozoan parasite, Trypanosoma cruzi. This parasite is transmitted when the feces of the infected triatomine enter the bloodstream of the host. One of the most important vector-species of this disease in the Southern Cone region of South America is Triatoma infestans. In this study, we evaluated the role of constant and variable environmental temperature on the feeding behavior of T. infestans. Fifth-instar nymphs were acclimatized to 4 thermal treatments comprising 2 temperatures (27 °C and 18 °C) with and without diurnal thermal variability (27 ±â€…5 °C and 18 ±â€…5 °C). Individuals were fed weekly for 7 wk to quantify their feeding. Our results showed lower feeding frequency in nymphs acclimatized to cold temperature compared to those from warmer temperature treatments. However, treatments with thermal variability presented a nonlinear effect on feeding, with an increased feeding rate in the cold, variable treatment and a decreased feeding rate in the warm, variable treatment. Individuals maintained under cold treatments, the variable temperature exhibited a higher feeding rate and the lowest amount of ingested blood among all treatments. Thus, natural diurnal temperature variation cannot be ignored if we are to make more accurate T. cruzi transmission risk predictions now and in the future.

2.
Microorganisms ; 10(5)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35630447

RESUMO

Trypanosoma cruzi is the causal agent of Chagas disease, a parasitic zoonosis transmitted mainly through the feces of triatomine insects. Triatoma infestans is the main triatomine vector of this disease in South America. Previous research has shown that T. cruzi infection modifies the behavior of triatomines. We evaluated, for the first time, the effect of parasite load on feeding and defecation behavior, which we quantified by using real-time PCR. The detection time of the host was shorter in infected individuals, and the number of bites increased, while the dejection time was reduced when compared with the non-infected group. A significant correlation between the parasite load and the behavioral changes registered in the infected triatomines was found. These results would indicate that the intensity of T. cruzi infection modulates the feeding and defecation behavior of T. infestans, increasing the vector competence of this triatomine vector.

3.
Acta Trop ; 229: 106365, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35150641

RESUMO

BACKGROUND: Mepraia spinolai, a wild vector of Trypanosoma cruzi in Chile, is an abundant triatomine species that is frequently infected by the parasite that causes Chagas disease. The aim of this study was to determine if the parasitic load of T. cruzi in M. spinolai is related to its blood meal source and the infecting DTUs of T. cruzi. METHODS: The vector was captured in rural areas. In the laboratory, DNA was extracted from its abdomen and T. cruzi was quantified using qPCR. Real time PCR assays for four T. cruzi DTUs were performed. Blood meal sources were identified by real-time PCR amplification of vertebrate cytochrome b gene sequences coupled with high resolution melting (HRM). RESULTS: Trypanosoma cruzi was detected in 735 M. spinolai; in 484 we identified one blood meal source, corresponding to human, sylvatic, and domestic species. From these, in 224 we were able to discriminate the infecting DTU. When comparing the parasitic loads between the unique blood meal sources, no significant differences were found, but infections with more than one DTU showed higher parasitic loads than single infections. DTU TcI was detected in a high proportion of the samples. CONCLUSIONS: Higher parasitic loads are related to a greater number of T. cruzi DTUs infecting M. spinolai, and this triatomine seems to have a wide span of vertebrate species in its diet.


Assuntos
Doença de Chagas , Triatominae , Trypanosoma cruzi , Animais , Genótipo , Humanos , Insetos Vetores/parasitologia , Carga Parasitária , Triatominae/parasitologia , Trypanosoma cruzi/genética
4.
Insects ; 13(1)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35055920

RESUMO

American trypanosomiasis is a disease caused by the flagellate protozoan Trypanosoma cruzi, which is transmitted mainly in endemic areas by blood-sucking triatomine vectors. Triatoma infestans is the most important vector in the southern cone of South America, exhibiting a nocturnal host-seeking behavior. It has been previously documented that the parasite produces changes in some triatomine species, but this is the first time that the behavior of a vector has been evaluated in relation to its parasite load. After comparing the movement events and distance traveled of infected and non-infected T. infestans, we evaluated the change produced by different T. cruzi parasite loads on its circadian locomotor activity. We observed differences between infected and non-infected triatomines, and a significant relation between the parasite load and the increase in locomotor activity of T. infestans, which was accentuated during the photophase. This could have direct implications on the transmission of T. cruzi, as the increased movement and distance traveled could enhance the contact of the vector with the host, while increasing the predation risk for the vector, which could both constitute a risk for vectorial and oral transmission to mammals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...